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Introduction

In statistical analysis, regression analysis is a technique used to 

test the relationships between variables and make predictions 

based on those relationships.1 Regression analysis allows 

researchers and analysts to understand how changes in one 

variable (often called an independent variable) are associated 

with changes in another (called a dependent variable).2 The 

ability to use the relationship between a dependent variable 

and an independent variable allows for the prediction of future 

values of the dependent variable. 

This relationship might be causal in nature or deemed to just 

predict an association. The relationships are explained through 

variances, simple and multiple correlations, and regression 

coefficients, in an iterative process of fitting the regression of 

one variable on others.1 The current paper serves to introduce 

the reader to the two most common linear regression models: 

linear regression analysis and logistic regression analysis.

Linear regression

There are various types of regression analysis methods, which 

include but are not limited to linear regression, polynomial 

regression, logistic regression, lasso and ridge regressions.3 

Figure 1 is a representation of the common types of regression 

analysis methods.

It is important to note that Figure 1 represents linear models 

in general and not specifically linear regression analysis. Linear 

regression analysis is one type or form of a linear model, and so 

are the other regression types in Figure 1.

Linear regression can be termed simple or multiple linear 

regression. Simple linear regression tests the effect or influence 

of one variable (independent variable) on a single dependent 

variable.2,4 Equation 1 is a mathematical representation of the 

simple linear regression analysis. This is a general equation for a 

straight line. The equation is a derivative of a pair of simultaneous 

equations called normal equations, and the method of using 

these normal equations to derive a straight-line equation is 

called the least squares method.5

The normal equations are useful for a simple straight-line 

equation, while linear relations with curving lines require 

different sets of derivatives.5 As in the name, multiple linear 

regression has multiple explanatory or predictor variables, often 

called independent variables, used to estimate the future value 

of a dependent variable.2,4 Equation 2 represents multiple linear 

regression analysis. Figure 2 describes the statistical assumptions 

that must be met for linear regression analysis to be performed.

y = β0 + β1x + Ɛ                                    Equation 12

Where y is the dependent variable that is made of continuous 

data points; β1 is the slope of the line; x is the independent 
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variable; and β0 represents the intercept or the point where the 

straight line cuts the y-axis. Ɛ is the error term.

y = β0 + β1x +β2x + ...... βnxn + Ɛ Equation 22

Where x1, x2 and xn represent the multiple independent 

variables. The rest of the equation has the same parameters as 

the simple linear regression equation (Equation 1).

When plotting a regression model, and fitting the best line, some 

points will fall on the line and others above or below the line of 

best fit. Those points vertically above or below the line of best 

fit are called residuals. The error terms in both equations 1 and 

2 relate to these data points that do not perfectly fall on the line 

of best fit.

When applied in linear regression analysis, the least squares 

method aims to produce a fit where the sum of all the residuals 

approximates zero, or the sum is the least or smallest.3 Therefore, 

this computation will produce two outcomes, where a) the 

squared sum of the residuals (SSRes) represents deviation that 

the model failed to explain or estimate, hence the relationship 

to the error term, and b) the regression sum of squares (RegSS), 

which represent the variation in the dependent variable (y) that 

is explained by the line of best fit.4

In the model, the RegSS would be derived as a sum of the squares 
of vertical distances from the line of best fit to the horizontal line 
where y is equal to the mean or average. Both the RegSS and 
the residual sum of squares (RSS) represent deviations from the 
line of best fit. The former deviation is called explained deviation, 
while the latter is called unexplained. Figure 3 demonstrates the 
relationship of the measures of variation in linear regression 
analysis.

The mathematical relationship of the measures of variation 
represented in Figure 3 can be described by Equation 3.

Total sum of squares (TSS) = RegSS + ResSS Equation 3
Where RegSS is the regression sum of squares (derived from the 
sum of the square vertical distances between the line of best 
fit and y is equal to the mean, and ResSS is the residual sum of 
squares (representing the sum of squared distances of all the 
vertical points above and below the line of best fit).4

Then, to understand how well the regression model is 
performing, a ratio of the RegSS over the TSS would indicate 
model performance. As with all ratios, this ratio falls between 0 
and 1, with 1 indicating a good and ideal model performance and 
0 indicating a poor model. The outcome of this ratio represents 
a regression correlation coefficient, called the coefficient of 

Figure 1: Types of regression models or algorithms (in this case all models assume linearity between inputs and output)

 
Figure 2: Types of linear regression analysis: simple versus multiple
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determination (CD), denoted by R2. It is a measure of correlation 

because, in classical linear regression analysis, the square root 

of the CD gives an output mathematically equal to the Pearson 

correlation coefficient.

To illustrate the simple linear regression, computer-generated 

dummy data with patient ages and STAT 2020 mortality scores 

were used. The mortality score was developed in 2009 and 

updated in 2020. It is a risk stratification tool used to stratify 

congenital heart disease surgical intervention into groups of 

increasing risk of mortality.6 These variables were generated 

at random and represent no actual patients. To illustrate the 

concept of simple linear regression, a mortality score is regressed 

on age, which means age as the independent variable is used to 

predict the value of a mortality score.

In Figure 4, the p-value of the model is significant, indicating that 

the model is significant as a whole and can be used to describe 

the linear relationship between age and risk of mortality. Age 

is statistically significant and has a negative coefficient. This 

negative statistically significant relationship indicates that as 

age (in months) increases for paediatric patients with congenital 

heart defects, which require surgical intervention, the risk score 

decreases. Older paediatric patients are at a reduced risk of 

mortality compared to younger paediatric patients, who would 

in this example have a characteristically high risk score.

In this model, Model SS represents RegSS, which are the 

deviations explained by the model. The Residual SS represents 

the error term or the sum of squares of the residuals. Although 

the model is significant, the R2 of the model is 6%. As discussed 

earlier, this comes from the ratio ResSS / TSS. The smaller the 

ratio, the weaker the model and the closer the ratio is to 1 or 

100%, the better the model is at representing the variation in y, 

which is explained by the model.

The equation of the line is therefore: 

STAT 2020 mortality score = 0.45 + (-0.02) * age (in months)

Therefore, when age increases by a unit (one month increase in 

age), the risk score decreases by 0.02. As such, this model allows 

us to predict what the risk score can be at any known value of 

age. At 12 months of age, the risk score can be calculated to be 

0.21 = 0.45 + (-0.02 * 12).

Once a model such as in Figure 4 has been developed, the quality 

of the model must be tested. Several post-model tests, based on 

the assumptions that were made before the modelling process, 

are used to assess whether the developed model is reliable. The 

most used tests for the quality of the model include:

a.	The y-estimates must fall within the range of the sample 

y-values. If this condition is not satisfied, it may be possible 

that at extreme ends, the relationship of y to x is non-linear.

b.	The second condition to test is the distribution of the residuals. 

In a normal distribution, the data are symmetrical around the 

mean, and when testing the distribution of the residuals, it 

would be expected for the polygon to peak around zero.7

c.	Test the variation of the residuals. A test of homoscedasticity 

or heteroscedasticity is often performed, where the variance 

of the residuals across a range of x-values is tested. An even 

variance, called homoscedasticity, is a desired outcome. There 

are statistical tests such as the Breusch-Pagan test or the White 

test for this equality of variance.

d.	The independence of residuals otherwise represented as 

autocorrelation should be tested. It is desired that the residuals 

must be independent and not autocorrelated. A Breusch-

Figure 3: Measures of variation in linear regression analysis

Figure 4: STAT output for linear regression analysis where age is used to predict the risk of mortality score
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Godfrey LM test may be computed to test the null 
hypothesis on the independence of the residuals.

e.	Finally, a test for missing variables may be 
performed to assess the quality of a simple linear 
regression model.2 A Ramsey RESET test can 
be performed and it will indicate if the model 
performs better if additional variables are added.

Figures 5, 6, and 7 represent the STATA outputs for 
the tests in b to e.

In Figure 5, the residuals are first generated as a 
variable in the data set. Then a Shapiro-Wilk test is 
applied to ascertain the nature of the probability of distribution 
of the residuals. The high significant p-value indicates that the 
residuals are not normally distributed. Figure 6 presents the two 
possible tests for testing the equality of variance of the residuals. 

A Breusch-Godfrey test for autocorrelation tests the null 
hypothesis that postulates no autocorrelation and if significant, 
the null would be rejected. Finally, Figure 7 represents the result 
of the Ramsey RESET test.

After developing the model and testing the quality of the model, 
it can be accepted that although the model has a significant F 
statistic, and the relationship of age to the mortality risk score 
was found to be significant, a better model may be possible 
when other variables are added to the model to enhance the 
understanding of factors related to mortality in this case.

Although linear regression analysis has numerous applications in 
medical research, it is often limited by the nature of the outcome 
variable being studied.2 It is limited to studying outcomes that 
are continuous, such as changes in blood pressure. However, the 
presence or absence of a specific outcome of medical intervention 
and factors associated with such outcomes are often the desired 
knowledge. These intervention outcomes can be adverse effects 
of a new treatment regime compared to a standard of care, or 
in-hospital mortality, and have binary dependent variables that 
cannot be studied using linear regression analysis. For binary 
outcomes, logistic regression analysis is the correct type of 
regression to test the linear relationship between inputs and 
output.2,3

Logistic regression

Unlike in linear regression analysis, the estimating equation or 
method in logistic regression is the maximum likelihood (ML) 
method. The ML method uses a likelihood function, which is a 
probability function, where the probability of a certain binary 
outcome (Y) is the highest. This method allows for determining 
how the probability of success [P(Y) = 1)] can be affected by the 
presence of predictor variables (predictor variables that also 
have a probability of occurring in the population being studied).

In the previous linear regression model, the effect of age on the 
mortality risk score was tested. In a logistic regression, where the 
dependent variable can be mortality (where 1 means mortality 
present and 0 indicates the absence, with either state having an 

associated probability), it may be important to establish how 

the probability of mortality can be affected by the presence of 

comorbid disease in a patient. In this case, it may be possible 

that the presence of the comorbid disease may increase the 

probability of mortality. This conjecture is based on the premise 

that for non-mutually exclusive events (the presence of comorbid 

disease can occur together with mortality, and each event has a 

probability), probabilities are multiplicative and not additive.8

Figure 5: STATA output showing the generation of residuals as a new 
variable, then testing distribution

Figure 6: Test for equality of variance of the residuals

Figure 7: Ramsey RESET test with a significant p-value, indicating that 
the model misses some additional predictors
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The logistic regression model also applies 
a mathematical formula in testing the 
relationship of the binary outcome, with 
independent variables that can also be 
binary or categorical. When the coefficients 
are exponentiated, the relationship of how 
one status affects the probability of the 
other status can then be presented as the 
odds of the latter occurring.9 It is similar 
to linear regression but differs in the 
outcome variable (binary outcome) and 
has similar assumptions. Since it models 
the probability of an outcome that has a 
chance of being in one state or the other 
(outcome present versus outcome absent), 
this ratio is modelled as a logarithm of 
the chance of that outcome, hence the 
need to exponentiate the coefficient to 
attain interpretable odds ratios.10 Pandis 
describes the mathematical equation to 
model this outcome and is called a logit.9 
Equation 4 represents the mathematical 
equation of the logistic regression. The 
deferential steps to derive the equation 
can be found in Pandis, 2017.9

Log(p/1 - p) = β0 + β1x1 + β2X2 + ... βnXn Equation 410

When developing logistic regression 
analysis, the analyst can either start from 
a full model and progress to remove very 
insignificant variables, one variable at a time (a process called 
stepwise backward regression analysis); or the starting point can 
be a null model, with only the intercept, and progress forward to 
add predictors.10 To illustrate a logistic regression and interpret 
the results, the same data that were used for the linear regression 
analysis were used here.

Additionally, the computer-generated data included data on 
morbidity and mortality. As in linear regression analysis, once 
the logistic regression model is built, the next step is to assess 
the quality of the model, and similarly, there are a set of tests that 
can be performed.

An important consideration when setting off to compute a 
logistic regression analysis is the sample size. Smaller sample sizes 
with multiple variables produce bad-quality logistic regression 
models (models that have a high chance of overestimating the 
effect measured).11 An events per variable (EPV) approach is a 
popular method used to avoid the overestimating problem due 
to insufficient sample size.11 EPV is derived using the number 
of observations in the smaller of the two outcome groups, in 
relation to the number of predictor variables identified to be 
used in the model.11,12 These variables are called candidate 
predictors because it may compromise the model to use all of 
them in a saturated model. A rule of thumb often cited when 
using the EPV is that an EPV of 10 is acceptable.12

To demonstrate the logistic regression analysis, a saturated 

model (model with all variables: morbidity, mortality risk score 

and age, predicted mortality) was developed. Using a flexible 

p-value of 0.25, the non-predictive variables were dropped out. 

This is often called a univariate logistic regression analysis.10

An important first observation of the model in Figure 8 is that 

it is not a statistically significant model. The univariate analysis 

principle, as discussed in Sperandei, would suggest that variable 

age be dropped out first.10 Age has the highest p-value of 

0.35, which is greater than the recommended 0.25 suggested 

by Sperandei.10 The p-value of 0.25 is not a rigid selection, as 

the intention of the regression at this stage is not to predict 

relationships but rather to select candidate predictors.10 Based 

on this notion, age was kept in the model at the first backward 

dropping of predictors. Morbidity was the initially excluded 

predictor as in Figure 9.

Figure 9 still reflects an insignificant model, but the p-value 

has improved to what some researchers might term marginally 

significant. In this paper, even if the p-value is above 0.05 by a 

small fraction of a number, it was considered insignificant. The 

Figure 9 model still has age as highly insignificant (p-value of 

0.32). Therefore, in the second iteration of model building, in the 

direction that removes insignificant variables, age was omitted 

in the next model.

Figure 8: A saturated logistic regression model, built to derive a final model through stepwise 
backward regression analysis

Figure 9: Stepwise backward univariate analysis regression excluding morbidity



S141

Regression analysis basics: making the right choice of type of regression analysis to model clinical data

South Afr J Anaesth Analg 2023; 29(5)Supplement http://www.sajaa.co.za

The iterations in Figure 10 (4 iterations) indicate how 
rapidly the modelling process converged. The model 
had a log-likelihood of -45.60, which is a measure of the 
goodness-of-fit (GOF). It can range from negative infinity 
to positive infinity. The bigger the log-likelihood of a 
model is, the better the model. However, it is often not a 
used indicator, unless it is used to help compare nested 
models.

The model without the two highly insignificant variables 
(age and morbidity), is a significant model. The likelihood 
ratio chi-square has a significant p-value. This indicates 
that adding the variable surgical risk of mortality score 
made the model predict mortality better than the null 
model (a model with just the intercept). However, it is 
possible that in practice a reduced model may exclude 
some variables that have clinical relevance. Therefore, 
the determination to identify a model as final should 
always weigh in the clinical relevance of the factors 
studied for the outcome of interest. For the current 
paper, the model in Figure 10 was accepted as the final 
logistic regression model. Figure 11 represents the final 
model with odds ratios. To have the confidence that the 
selected model is indeed the best, a LR test with a null 
hypothesis can be computed to establish if the models 
are statistically different (significantly different based on 
the null hypothesis that the full model is the same as the reduced 
model).

For the model in Figure 11, for every one-unit change in the 
STAT 2020 mortality risk score, the log odds of mortality (versus 
survival) increased by 4.55. The final model equation is:

log(p/1 - p) = 0.25 + 4.545659*STAT2020score

To test the quality of the model, there are a few techniques to 
establish the prediction error of the model. A useful technique is 
the training and testing approach, where the data can be subset 
with a bigger portion, often 70% used to develop the model in 
a process called training, and the rest of the data are used to 
validate the model in a process called testing.13 Another method 
is the use of the area under the receiver operating characteristic 
curve (ROC curve). Additional methods include computation of a 
confusion matrix, using GOF tests (Pearson GOF and the Hosmer-
Lemeshow GOF tests), information criteria statistics, which are 
also a form of GOF tests, and analysis of residuals following the 
model command.13

The vertical line in Figure 12 can be taken as a model that has 
no predictive value. A model with a high predictive value has an 
area under the ROC curve that approximates or goes closer to 
1. The current model has an area under the ROC curve of 0.71. 
A ROC curve of 0.72 is often described as representative of a 
strong model, and the current model nearly achieved that level 
of predictive value.

Figure 13 represents the result of a Pearson GOF test. The 
null hypothesis is that there is no difference in the number of 

observed and predicted successes in each group of the outcome. 

The p-value is significant and therefore we can reject the null 

hypothesis. This test statistic corrodes the confidence that 

regression has achieved good agreement between the model 

predictions and the observed mortality outcomes.

Figure 10: Final significant model, presented with the coefficients that need to 
be exponentiated to get the odds ratios

Figure 11: Final model with odds ratios and their 95% confidence interval (CI)

0.
00

0.
25

0.
50

0.
75

1.
00

Se
ns

iti
vi

ty

0.00 0.25 0.50 0.75 1.00
1 - specificity

Area under ROC curve = 0.7062

Figure 12: ROC curve for the final logistic regression model

Figure 13: A GOF test statistic with a significant p-value



S142

Regression analysis basics: making the right choice of type of regression analysis to model clinical data

South Afr J Anaesth Analg 2023; 29(5)Supplement http://www.sajaa.co.za

Although a confusion matrix is one of the most popular post-

regression tests, the results can be affected by the proportion of 

the outcome in the sample or the positive cases.14 This problem 

was a reality for the current model developed using data that 

was computer generated and might not represent real-life 

patient data. However, the data worked well to demonstrate the 

concepts. This limitation can be addressed by earlier steps of 

considering the representation of the outcome in the sampling 

techniques and calculations. Figure 14 reports the indicators in 

the confusion matrix.

Whether the data types favour linear regression analysis or 

logistic regression analysis, the process of data collection, data 

preprocessing, and finally deciding on the correct regression 

analysis to be performed require diligence and careful 

understanding of the statistical assumptions associated with the 

chosen analysis.

Conclusion

Regression analysis is a powerful tool that enables researchers 
and analysts to uncover relationships, identify trends, and 
make predictions. If adequate data is used correctly, studied 
relationships using regression analysis can provide insights 
about the phenomena in question. Simple linear and multiple 
linear regression can be used successfully to understand health 
data that is continuous, but when data of interest has dependent 
variables that are binary or categorical, a linear regression analysis 
will be incorrect. The logistic regression can adequately analyse 
data where the outcome is binary. It is important to perform 
post-model testing to ensure the quality of the regression model. 
This quality assurance will enhance the usefulness of the insights 
derived from regression analysis and modelling.
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